A trust-semantic fusion-based recommendation approach for e-business applications
نویسندگان
چکیده
a r t i c l e i n f o Collaborative Filtering (CF) is the most popular recommendation technique but still suffers from data sparsi-ty, user and item cold-start problems, resulting in poor recommendation accuracy and reduced coverage. This study incorporates additional information from the users' social trust network and the items' semantic domain knowledge to alleviate these problems. It proposes an innovative Trust–Semantic Fusion (TSF)-based recommendation approach within the CF framework. Experiments demonstrate that the TSF approach significantly outperforms existing recommendation algorithms in terms of recommendation accuracy and coverage when dealing with the above problems. A business-to-business recommender system case study validates the applicability of the TSF approach. Recommender systems are considered the most popular forms of web personalization and have become a promising and important research topic in information sciences and decision support systems Recommender systems are used to either predict whether a particular user will like a particular item or to identify a set of k items that will be of interest to a certain user, and have been used in different web-based applications including e-business, e-learning and e-tourism [8,22,31]. Currently, Collaborative Filtering (CF) is probably the most known and commonly used recommendation approach in recommender systems. CF works by collecting user ratings for items in a given domain and computing similarities between users or between items in order to produce recommendations [1,31]. CF can be further divided into user-based and item-based CF approaches. In user-based CF approach, a user will receive recommendations of items that similar users liked. In item-based CF approach, a user will receive recommendations of items that are similar to the ones that the user liked in the past [1]. Despite their popularity and success, the CF-based approaches still suffer from some major limitations ; these include data sparsity, cold-start user and cold-start item problems [1,3,36,37]. The data sparsity problem occurs when the number of available items increases and the number of ratings in the rating matrix is insufficient for generating accurate predictions. When the ratings obtained are very small compared to the number of ratings that are needed to be predicted, a recommender system becomes unable to locate similar neighbors and produces poor recommendations. The cold-start (CS) user problem, which is also known as the new user problem, affects users who have none, or a small number of ratings. When the number of rated items is small for the CS user, …
منابع مشابه
A Novel Trust Computation Method Based on User Ratings to Improve the Recommendation
Today, the trust has turned into one of the most beneficial solutions to improve recommender systems, especially in the collaborative filtering method. However, trust statements suffer from a number of shortcomings, including the trust statements sparsity, users' inability to express explicit trust for other users in most of the existing applications, etc. Thus to overcome these problems, this ...
متن کاملAHP Techniques for Trust Evaluation in Semantic Web
The increasing reliance on information gathered from the web and other internet technologies raise the issue of trust. Through the development of semantic Web, One major difficulty is that, by its very nature, the semantic web is a large, uncensored system to which anyone may contribute. This raises the question of how much credence to give each resource. Each user knows the trustworthiness of ...
متن کاملAHP Techniques for Trust Evaluation in Semantic Web
The increasing reliance on information gathered from the web and other internet technologies raise the issue of trust. Through the development of semantic Web, One major difficulty is that, by its very nature, the semantic web is a large, uncensored system to which anyone may contribute. This raises the question of how much credence to give each resource. Each user knows the trustworthiness of ...
متن کاملUse of Semantic Similarity and Web Usage Mining to Alleviate the Drawbacks of User-Based Collaborative Filtering Recommender Systems
One of the most famous methods for recommendation is user-based Collaborative Filtering (CF). This system compares active user’s items rating with historical rating records of other users to find similar users and recommending items which seems interesting to these similar users and have not been rated by the active user. As a way of computing recommendations, the ultimate goal of the user-ba...
متن کاملAutomatic Hashtag Recommendation in Social Networking and Microblogging Platforms Using a Knowledge-Intensive Content-based Approach
In social networking/microblogging environments, #tag is often used for categorizing messages and marking their key points. Also, since some social networks such as twitter apply restrictions on the number of characters in messages, #tags can serve as a useful tool for helping users express their messages. In this paper, a new knowledge-intensive content-based #tag recommendation system is intr...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Decision Support Systems
دوره 54 شماره
صفحات -
تاریخ انتشار 2012